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Abstract— An analytical study is made for the effect of flow inertia on vertical, natural convection in saturated,
porous media. Within the framework of boundary-layer approximations, Forchheimer’s model was trans-
formed into a set of non-similar equations. Effects of flow inertia are measured and examined in terms of
the dimensionless inertia parameter ¢ = Gr, Fo,, where Gr, is the local Grashof number of determined by the
bulk properties of saturated porous media, and Fo, is a new dimensionless parameter governed by the
microstructure of porous matrix. The non-similar solutions are presented and discussed for two types of flow :
(1) the uniform heat flux surface ; and (2) plane plume flows. Results show that thermal boundary layer in the
non-Darcy regime is thicker than the corresponding pure-Darcy flow. In addition, the local wall heat fluxes for
the first case and the maximum temperature gradient for the second case decrease with increasing &.

1. INTRODUCTION

TRANSPORT processes in porous media occur in many
different fields and engineering applications such
as petroleum reservoirs and geothermal operations,
packed-bed chemical reactors, transpiration cooling,
food drying and building insulation. This has led to
extensive researches into the subject. Most studies deal
primarily with the mathematical formulation based on
Darcy’s law, which neglects the inertia effect on the flow
and heat transfer through porous media [1, 2]. This
also includes the boundary-layer treatment of Darcy’s
law,seerefs. [3-12]. However, theeffect of flow inertia is
expected to become more significant when the pore
Reynolds number is large. This is especially the case in
high Rayleigh number regime or in high-porosity
media.

In spite of the importance of inertia effect in common
practice, no serious efforts have been devoted to its
study until recently. Vafai and Tien [13] investigated
the inertia and boundary effects in forced convection
over a horizontal, heated plate based on the volume-
average technique. Vafai [14] studied the inertia effect
in a similar problem but also considered the variable-
porosity effect. For natural convection in saturated,
porous media, Plumb and Huenefeld [15] studied
the inertia effect along an isothermal, vertical plate
based on the Ergun model using the boundary-layer
approximations and obtained the similarity solutions.
Bejan and Poulikakos [16] studied the similar
problems (including uniform heat flux plate) based on
the Forchheimer’s model. However, the scales chosen
were based on the order of magnitude analysis in the
limit where the inertia force was predominant. As a
result, the Rayleigh number used in ref. [ 16] is different
from the conventional one [10, 15] and the Nusselt
number expression differs markedly from its counter-
part in the pure-Darcy limit. Moreover, the effect of
flow inertia was not examined when the similarity
solutions did not exist.
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It is the purpose of this study to examine the inertia
effect on vertical, natural convection, boundary-layer
flows in saturated, porous media, specifically, for a
class of non-similar problems in terms of the inertia
parameter £, In all cases, the inertia effect on the flow
and heat transfer characteristics are presented and
discussed for both the Darcy regime ¢ = 0 and the non-
Darcy regime ¢ # 0. Comparisons of local heat flux in
thelimits of ¢ - 0and ¢ — oo with other studies are also
made.

2. MATHEMATICAL FORMULATION

Consider the problem of steady, natural con-
vection in a porous medium adjacent to a vertical,
impermeable plate (Fig. 1) with a prescribed surface
temperature different from that at infinity. The origin of
the coordinate system is placed on the impermeable
plate where its temperature begins to deviate from that
of the ambient temperature with x and y denoting the
coordinates parallel and normal to the bounding
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F1G. 1. Schematic of natural convection near a vertical plate.
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g gravitational acceleration; also
dimensionless function defined in
equation (22)

local Grashof number defined in equation
(20)

H  characteristic height of porous medium
K  permeability of porous medium

k  thermal conductivity of saturated porous
medium

local Nusselt number defined in equation
(36)

p  pressure

Pr  Prandtl number

q local wall heat flux

qg. convection energy in boundary layer,
defined in equation (37)

local Rayleigh number defined in
equation (13)

T  temperature

NOMENCLATURE
A constant in equation (10) u vertical velocity component
C, specific heat of saturated porous medium v horizontal velocity component
J  dimensionless streamfunction defined in x  coordinate parallel to vertical plate
equation (14a) y  coordinate normal to vertical plate.
Fo, dimensionless number defined in equation
21

Greek symbols

e thermal diffusivity

o boundary-layer thickness

14 inertia parameter ; dimensionless
coordinate
dimensionless coordinate
thermal expansion coefficient
fluid density
fluid viscosity
constant in equation (10)
dimensionless function defined in
equation (23)
streamfunction
dimensionless temperature.

S S >T'T T ™=

Subscripts

max maximum value
0 condition when A = 0
o  value in the ambient.

surface. If we assume that: (1) properties of the fluid
and the porous medium are everywhere isotropic
and homogeneous; (2) Forchheimer’s model is used
for the momentum equation and (3) the Boussinesq
approximation is employed, then the governing
equations in a Cartesian coordinate system are given
by [2]
ou Ov
™ + - 0 m
I T3 op’
Eu+bpu. fut+v* = — I +pgB(T-T,) (2)

a !
%v+bpu./u2+vz=—l 3)

oy
oT + oT o*T + o*T @
U—+v—=0of =5+ —5
dx dy *\ax? dy?

where p’ is the pressure difference between the actual
static pressure and the local hydrostatic one; p, g and f
are the density, viscosity and the thermal expansion
coefficient of the fluid, respectively; K is the per-
meability of the porous matrix, a = k/(pC,) is the
equivalent thermal diffusivity. Note that the second
term on the LHS of equation (2) or (3)is the inertia force
in Forchheimer’s model, which is omitted in Darcy’s
law, and b is a non-negative constant depending on the
microstructure of the porous matrix (the units of b are
m™ 1), see ref. [2]. Following the order of magnitude

analysis in the boundary layer [9], for example,

u v
H

0 « o 0 o*
DAY
ox 8y ox%  9y?

the boundary-layer equations for the porous layer
along the heated, vertical plate are

2—Z+§§-=o )

u<1+ bfﬁu) - —5{@ —pgB(T~ m} ©)
U p {0x

0= o ¥=pw )

ua—T—i- or ozaz—T. (8)

0x Ua= dy?

Note that we have made use of the fact that

u/u?+0? = w1+ (w)? ~ u?
inequation (6). Eliminating p’ from equations (6)and (7)
yields

aT u ou b o’

= 9
oy pgBK dy gB dy ®
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The boundary conditions for equations (5), (8) and (9)
are

y=0:0v=0, T=T,=T,+Ax*
y=ow:u=0, T=T,.

(10)
(11

In equation (10), the wall temperature is a power
function of x ; A and A are constants. By suitable choice
of A, the problem can be related to the natural
convection adjacent to isothermal plate, uniform heat
flux plate or plane plume generated from a line heating
source, as will be described later.

The following variables are used to transform the
(x, y) coordinates to dimensionless (¢(x), n(x, y)) forms

n= Y Ral? (12a)
x
¢=4¢(x) (12b)
where
Ra, = pgBK(T, — T, )x/pa. (13)

The coordinate £(x) is so chosen that x does not appear
explicitly in either the transformed equation or
the transformed boundary condition. In addition,
the dimensionless streamfunction f(&,#) and the
dimensionless temperature function 6(¢, #) are defined,
respectively, as

'//(x, y)

—1/2

f&n = (14a)

0, n) =

- T (14b)

where Y(x, y) is the streamfunction and

oy W

U=— v=—

oy’ ox

Substitute equations(12)-(15)into equations(5),(8) and
(9) to obtain

(15)

o—f" = dfrz (16)
dn
Y e 00 of
0"+3(1+4) 10 if@-lé(f FF 035) 17
The transformed boundary conditions are
n=0:00=1 (18a)
ﬂf(é 0)+,1€~f—0 (18b)
o¢
n=00:0¢ 0)=0 [f(&x)=0. (19a,b)

In these equations, primes denote partial differen-
tiation with respect to #, and & is

&(x) = Gr Fo, = (Ra,/Pr)Fo, (20)

where Pr is the Prandtl number, Gr, is the Grashof
number, and Fo, is a new dimensionless number
defined by

Fo, = Kb/x. @21

HMT 29:5-G
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It can be seen that the inertia parameter £ is the product
of Gr, and Fo,. The former measures the local vigour of
the flow, while the latter depends on the microstructure
of the porous matrix [2].

Equations (16)+(19) show that the problem does not,
in general, permit a similarity solution, except that: (1)
¢ = 0, namely, flow inertia is neglected as in the Darcy
regime, see ref. [10]; or (2) £ = non-zero constant, that
is, ¢ does not depend on x. From equations (10) and (20),
the second condition can be satisfied only if A = 0 and
corresponds to the natural convection adjacent to an
isothermal, vertical plate, see ref. [15].

For A # 0,the problems are non-similar and the local
non-similarity procedures described in refs. [19, 20]
are employed to solve equations (16)-(19). Introduce
two new functions

af
g n —55 (22)
o= 65' (23)

Substituting equations (22)23) into equation (17)
yields
1+2
0"+—2—f9’—,1f’0 = XU(f"d—0g). (29
Integrate equation (16) with respect to n and using the
boundary condition (19b) to yield

O—f =12 (25)

Differentiate equations (24) and (25) with respect to ¢
and use relations (22) and (23) yielding

b—g—f*=2fyg
1434 1+

¢"+T 0’+——f¢ —Ag'6—-24f"0

(26)

~iewo-v0 - (1 -0 %) @

The boundary conditions for the above two equations
can be obtained in a similar way and are in the forms of

n=0:(50) =
L g 2

960 =~ 706055 @
1= 0: $(& ) = 29

To the first level of approximation, all the terms
involving the &-derivative in equations (26)(29) are
neglected. Therefore, we have two auxiliary equations

o—g—f*=2fyg (30)

1+2

1432
0’+——f¢ —ig0-=2.f"¢

A

=Mgo—¢9) (1

with boundary conditions
1=0:9&0=0, ¢(¢,0=
n=c0: $(& ) = 0.

(32)
(33)
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The local heat flux along the surface is calculated
from

(5)
q=—K|—-—
6y y=0

172
— kA3/2 (pfjﬁ> ! x(3}.—1)/2[__9/(0)] (34)

which can be rewritten as

Nu, = [~ 0'(0)] Ral/? (3%
where Nu is the local Nusselt number defined by
Nu, = 2% Elad (36)

TKAT  K(T,—T,)

The amount of energy convected in the boundary
region is

KA 1/2 £
4.0) = pC,A (ﬂ‘fu) X012 f Fodn. @)
H 0

Equations (16)19) and equations (30)~33) form four
coupled differential equations. For a fixed &, they can
be treated as a set of ordinary differential equations of
the similarity type, and can be integrated numerically
by the Runge-Kutta method in conjunction with the
Newton—Raphson iterative scheme [18, 197].

In what follows results for two types of flow,
depending on the surface conditions, will be presented.
In the first, local heat flux along the vertical plate is
constant. As can be seen from equation (34), the first
case is obtained by setting 4 = 1/3. In the second, a
plane plume will be examined. This case is obtained by
setting A = —1/3. As seen from equation (37), the
convected energy in the boundary layer of plane plume
is independent of x-direction.

3. RESULTS AND DISCUSSIONS

The dimensionless temperature profile 8'(¢, ) and
the vertical velocity component f'(£, ) are presented in
Figs. 2(a) and (b) for the case of uniform heat flux
condition(4 = 1/3). In the figures, the inertia parameter
£ varies between 0 and 100. Notice that A =0
corresponds to the pure Darcy flow. It can be seen from
Fig. 2 that as & increases 6'(¢, 0) and f'(&, 0) decrease,
and thermal boundary-layer thickness increases
accordingly. That is, the neglect of flow inertia in the
momentum equation will result in overpredicting the
local wall heat flux. From equation (35) the
dimensionless heat flux can be expressed by

Nu,/Ral? = [—6/(0)]. (38)

The values of [ —6'(0)] depend on the £-parameter.
These functional dependencies are listed in Table 1 and
plotted in Fig. 3. It is shown in Fig. 3 that [ —6'(0)]
decreases as & increases.

Cheng and Minkowycz [10] investigated the prob-
lem based on the Darcy’s law, i.e. £ = 0. In terms of the
present notation, they obtained

Nu,/Ral?* = 0.679 (39)
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FI1G. 2(a). Dimensionless temperature profile for uniform heat
flux plate.

10 12

F1G. 2(b). Dimensionless vertical velocity profile for uniform
heat flux plate.

for uniform heat flux surface condition. Equation (39)is
shown as a dashed line in Fig. 3. It is evident that
equation (39) is the limiting solution (£ — 0) of the
present study.

Bejan and Poulikakos [16] investigated the same
problem based on Forchheimer’s model. As mentioned

Table 1. Values of calculated [ —&(0)] and 6., for
vertical natural convection in porous media

Nu,/Ra;> = [-0'(0)] — O

uniform heat flux plane plume

14 plate, A = 1/3 A=-1/3

0.0 0.6788 0.3143
0.001 0.6773 0.3141
0.01 0.6749 0.3126
0.1 0.6532 0.3002
1.0 0.5497 0.2453
50 04274 0.1863
10.0 0.3820 0.1616
50.0 0.2751 0.1185
100.0 0.2355 0.0958
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100

————— Present study

From equation {39)
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FIG. 3. Nu,/Ral’? vs ¢ for uniform heat flux plate.

100

earlier, they used different boundary-layer scales, which
were based on the limit when £ — oo. In the present
notation, they obtained

Nu,/Ra?? = 0.695& 113, (40)
Equation (40) shows that Nu, depends on Ra2/®. This
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FIG. 4(b). Dimensionless vertical velocity profile for plane
plume.
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FIG. 5. Dependence of &;,,, on n and ¢ for plane plume.

differs fandamentally from the present study and that of
Cheng and Minkowycz [10] in which Nu, depends on
Ral?.

The plots of 6(¢,n) and f'(& n) for the plane
plume (1 = — 1/3) are presented in Figs. 4(a) and (b), re-
spectively. As in the case of uniform heat flux plate,
f'(¢, 0)decreases and thermal boundary layer increases
as ¢ increases. Since #'(£,0) = 0, an alternative way
to examine the inertia effect on plane plume flow is
by evaluating the local non-dimensional temperature
gradient of

00
6, = o

Thefunctional dependencies of &’ on £ and narelisted in
Table 1 and presented in Fig. 5. It can be seen from Fig. 5
that there is a maximum value of @, called ., , for each
value of ¢; and that 6,,,, decreases as ¢ increases.

4. CONCLUSIONS

The effect of flow inertia on vertical, natural
convection heat transfer in saturated, porous media has
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Fi16. 6. The normalized Nu, and @, for: (1) A = 1/3, uniform
heat flux plate; and (2) A = —1/3, plane plume.
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been investigated by a local non-similarity method.
Based on Forchheimer’s model and boundary-layer
approximations, the inertia effect is measured by the
dimensionless parameter, £, which turns out to be
the product of Gr, and Fo,. The former measures
the local vigour of the flow and depends on the
bulk properties of fluid and porous system, while the
latter depends on the microstructure of the porous
matrix.

Results are presented and discussed for two types of
flow : the uniform heat flux plate and plane plume flows.
In each case, the thermal boundary layer increases with
increasing &. Effects of £ on Nu, and 6., are presented
in Table 1 and Figs. 3 and 5. Figure 6 summarizes these
relations by normalizing the Nu_ or 8, with respect to
their corresponding pure-Darcy values. It can be seen
that the normalized values decrease as & increases.
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EFFETS DE L'INERTIE SUR LA CONVECTION NATURELLE VERTICALE DANS LES
MILIEUX POREUX SATURES

Résumé—On étudie analytiquement P'effet de I'inertie de 'écoulement sur la convection naturelle verticale
dans les milieux poreux. Dans le cadre des approximations de la couche limite, le modéle de Forchheimer est
transformé en un systéme d’équations non linéaires. Les effets de I'inertie sont évalués et examinés en fonction
du paramétre adimensionnel d'inertie ¢ = Gr Fo_, ou Gr, est le nombre de Grashof local déterminé a partir
des propriétes globales du milieu poreux et Fo, est un nouveau paramétre adimensionnel gouverné par la
microstructure de la matrice poreuse. Les solutions non similaires sont présentées et discutées pour deux types
d’écoulement : (1) flux de chaleur uniforme sur la surface; et (2) écoulements de panache plans. Les résultats
montrent que la couche limite thermique est dans le régime non-darcien, plus mince que I’écoulement
correspondant selon Darcy. De plus, les flux locaux d la paroi pour le premier cas et le gradient maximal de
température, pour le second cas, décroissent quand £ augmente.
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DER TRAGHEITSEINFLUSS BEI VERTIKALER, NATURLICHER KONVEKTION IN
DURCHTRANKTEN POROSEN MEDIEN

Zusammenfassung— Der TrigheitseinfluB bei vertikaler, natiirlicher Konvektion in durchtrinkten, porosen
Medien wurde analytisch untersucht. Im Rahmen der Grenzschicht-Approximationen wurde Forchheimers
Modell in einen Satz von unabhingigen Gleichungen formuliert. Der TrigheitseinfluB bei der Stromung
wurde gemessen und mit Hilfe des dreidimensionalen Trigheitsparameters £ = Gr,Fo, iiberpriift. Dabei wird
dielokale Grashof-Zahl Gr, durch die mittleren Stoffeigenschaften der getrankten, por6sen Medien bestimmt
und ein neuer dimensionsloser Parameter Fo, durch die Mikrostruktur des pordsen Gefiiges festgelegt. Die
unabhingigen Losungen werden dargelegt und fiir zwei Stromungsarten erdrtert: (1) Stromung bei
gleichformiger Wirmestromdichte, (2) Stromung einer ebenen Auftriebsfahne. Die Ergebnisse zeigen, daB die
thermische Grenzschicht auBerhalb des Darcy-Bereiches dicker ist als bei der entsprechenden reinen Darcy-
Stréomung. Zusitzlich sinkt beim ersten Fall die ortliche Wandwarmestromdichte und im zweiten Fall der
maximale Temperaturgradient bei anwachsendem ¢.

BJIUSIHUE MHEPLIMOHHBIX CBOMCTB MOTOKA HA BEPTHUKAJILHYIO
ECTECTBEHHYIO KOHBEKLHIO B HACBIIIEHHBLIX MOPUCTBIX CPEJIAX

AHHOTAIHS—AHAINTHYECKH HCCJIEJOBAHO BIIMSHHME HWHEPLMOHHBIX CBOMCTB IIOTOKAa Ha BEPTHKAJIBHYIO
€CTECTBCHHYIO KOHBEKLMIO B HACHILICHHBIX TNOPHCTBIX cpedax. B mpuGnmkeHHH norpaHciios MoIesb
dopxaiimMepa npeobpasyercs K CHCTEME HEaBTOMOME/IBHBIX YpaBHEHHH. BiMsiHHe HHEPIMH YYHTHIBAIOCH
¥ aHAJIM3HPOBAJIOCh ¢ MOoMoulblo 6e3pasmepHoro napamerpa ¢ = Gr, Fo,, roe Gr,—loKaJibHOE YHMCIIO
['pacroda, ompenenseMoe OObEeMHBIMH XapaKTEPHCTHMKAMH HACHIIUEHHBIX MOPMCTBIX Cpea, a
Fo,—HoBbIii Ge3pasMepHBiii TapaMeTp, CBA3aHHbIH ¢ MHKPOCTPYKTYPOIl nopHCTOi MaTpuuibl. HaiineHs
M IPOAHATIM3UPOBAHBI HEABTOMO/IE/IbHBIC PEIICHHS A1 ABYX THNOB TeYeHHH: (1) K NOBEPXHOCTH MOBO-
OUTCS OOHOPOIHBIH TEMJIOBOH MOTOK H (2) IUIOCKHE CTpyH. Pe3ynbTaTel MOKa3bIBalOT, YTO TOJIILHHA
TEMJIOBOrO MOTPaHUYHOIO C/IOA IUIA Cilyuas, He ONMHCbIBaeMoro 3akoHoM J[lapch, Goiblue, yeM mis
cay4as, nmoguMHsrowerocs 3akoHy Jlapcu. Kpome Toro, nokanpHble TEIIOBBIE NMOTOKH Y CTEHKM B
MepBOM Clly¥ae M MAKCHMAaJIbHBIH TEMIEPATYPHBI IPaIMCHT BO BTOPOM YMEHBILIAFOTCS ¢ POCTOM &.
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