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Abstract-An analytical study is made for the effect offlow inertia on vertical, natural convection in saturated, 
porous media. Within the framework of boundary-layer approximations, Forchheimer’s model was trans- 
formed into a set of non-similar equations. Effects of flow inertia are measured and examined in terms of 
the dimensionless inertia parameter c = Gr,Fo,, where Gr, is the local Grashof number of determined by the 
bulk properties of saturated porous media, and Fo, is a new dimensionless parameter governed by the 
microstructure of porous matrix. The non-similar solutidns are presented and discussed for two types offlow : 
(1) the uniform heat flux surface; and (2) plane plume flows. Results show that thermal boundary layer in the 
non-Darcy regime is thicker than the corresponding pure-Darcy flow. In addition, the local wall heat fluxes for 

the first case and the maximum temperature gradient for the second case decrease with increasing <. 

1. INTRODUCTION 

TRANSPORT processes in porous media occur in many 
different fields and engineering applications such 
as petroleum reservoirs and geothermal operations, 
packed-bed chemical reactors, transpiration cooling, 
food drying and building insulation. This has led to 
extensive researches into the subject. Most studies deal 
primarily with the mathematical formulation based on 
Darcy’s law, which neglects the inertia effect on the flow 
and heat transfer through porous media [l, 21. This 
also includes the boundary-layer treatment of Darcy’s 
law,seerefs. [3%12]. However, theeffect offlowinertiais 
expected to become more significant when the pore 
Reynolds number is large. This is especially the case in 
high Rayleigh number regime or in high-porosity 
media. 

In spite of the importance of inertia effect in common 
practice, no serious efforts have been devoted to its 
study until recently. Vafai and Tien [13] investigated 
the inertia and boundary effects in forced convection 
over a horizontal, heated plate based on the volume- 
average technique. Vafai [14] studied the inertia effect 
in a similar problem but also considered the variable- 
porosity effect. For natural convection in saturated, 
porous media, Plumb and Huenefeld [15] studied 
the inertia effect along an isothermal, vertical plate 
based on the Ergun model using the boundary-layer 
approximations and obtained the similarity solutions. 
Bejan and Poulikakos [16] studied the similar 
problems (including uniform heat flux plate) based on 
the Forchheimer’s model. However, the scales chosen 
were based on the order of magnitude analysis in the 
limit where the inertia force was predominant. As a 
result, the Rayleigh number used in ref. [ 161 is different 
from the conventional one [lo, 151 and the Nusselt 
number expression differs markedly from its counter- 
part in the pure-Darcy limit. Moreover, the effect of 
flow inertia was not examined when the similarity 
solutions did not exist. 

It is the purpose of this study to examine the inertia 
effect on vertical, natural convection, boundary-layer 
flows in saturated, porous media, specifically, for a 
class of non-similar problems in terms of the inertia 
parameter {. In all cases, the inertia effect on the flow 
and heat transfer characteristics are presented and 
discussed for both the Darcy regime 5 = 0 and the non- 
Darcy regime 5 # 0. Comparisons of local heat flux in 
the limits of 5 -+ 0 and [ + 00 with other studies are also 
made. 

2. MATHEMATICAL FORMULATION 

Consider the problem of steady, natural con- 
vection in a porous medium adjacent to a vertical, 
impermeable plate (Fig. 1) with a prescribed surface 
temperature different from that at infinity. The origin of 
the coordinate system is placed on the impermeable 
plate where its temperature begins to deviate from that 
of the ambient temperature with x and y denoting the 
coordinates parallel and normal to the bounding 
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FIG. 1. Schematic of natural convection near a vertical plate. 
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NOMENCLATURE 

A constant in equation (10) 

.r’ 

specific heat of saturated porous medium 
dimensionless streamfunction defined in 
equation (14a) 

Fo, dimensionless number defined in equation 

(21) 
9 gravitational acceleration ; also 

dimensionless function defined in 
equation (22) 

Gr, local Grashof number defined in equation 

(20) 
H characteristic height of porous medium 
K permeability of porous medium 
k thermal conductivity of saturated porous 

medium 
Nu, local Nusselt number defined in equation 

(36) 
P pressure 
Pr Prandtl number 

4 local wall heat flux 

u vertical velocity component 
V horizontal velocity component 
x coordinate parallel to vertical plate 

Y coordinate normal to vertical plate. 

Greek symbols 
thermal diffusivity 

: boundary-layer thickness 

5 inertia parameter ; dimensionless 
coordinate 

V dimensionless coordinate 
/I thermal expansion coefficient 

P fluid density 

; 
fluid viscosity 
constant in equation (10) 

4 dimensionless function defined in 
equation (23) 

II/ streamfunction 
e dimensionless temperature. 

40 convection energy in boundary layer, 
defined in equation (37) 

Ra, local Rayleigh number defined in 
equation (13) 

T temperature 

Subscripts 
max maximum value 

0 condition when 3, = 0 
co value in the ambient. 

surface. If we assume that : (1) properties of the fluid analysis in the boundary layer [9], for example, 
and the porous medium are everywhere isotropic 
and homogeneous; (2) Forchheimer’s model is used 

u v 

for the momentum equation and (3) the Boussinesq H=6 

approximation is employed, then the governing a a a2 a2 
equations in a Cartesian coordinate system are given -<<--, 

by PI 
ax ay axZ"ay2 

the boundary-layer equations for the porous layer 
along the heated, vertical plate are 

;u+bpu~&i?=-g+pg/?(T-T,) (2) 

where p’ is the pressure difference between the actual 
static pressure and the local hydrostatic one ; p, p and fl 
are the density, viscosity and the thermal expansion 
coefficient of the fluid, respectively; K is the per- 
meability of the porous matrix, CL = k/(pC,) is the 
equivalent thermal diffusivity. Note that the second 
term on the LHS of equation (2) or (3) is the inertia force 
in Forchheimer’s model, which is omitted in Darcy’s 
law, and b is a non-negative constant depending on the 
microstructure of the porous matrix (the units of b are 
m-l), see ref. [a]. Following the order of magnitude 

“+A!!,0 
ax ay (5) 

I++$%) =-;{g -pg/Il(T-T,)) (6) 

0 = 9 or p’ = p’(x) 
ay 

(7) 

aT aT pT 
Uax+vF=aay’. (8) 

Note that we have made use of the fact that 

l$/&T = U’JW u l42 

in equation (6). Eliminating p’ from equations (6) and (7) 
yields 

aT P au b au2 

z-pg/lK &+&$ 
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The boundary conditions for equations (5), (8) and (9) 
are 

y=O:v=O, T= T,=T,+Ax” (10) 

y= oo:u=O, T= T,. (11) 

In equation (lo), the wall temperature is a power 
function of x; A and 1 are constants. By suitable choice 
of 1, the problem can be related to the natural 
convection adjacent to isothermal plate, uniform heat 
flux plate or plane plume generated from a line heating 
source, as will be described later. 

The following variables are used to transform the 
(x, y) coordinates to dimensionless (s(x), ~(x, y)) forms 

rl = : R&z 
x X 

(12a) 

5 = 5(x) (12b) 
where 

Ra, = pgBK(T, - T,)x/w. (13) 

The coordinate c(x) is so chosen that x does not appear 
explicitly in either the transformed equation or 
the transformed boundary condition. In addition, 
the dimensionless streamfunction f(& q) and the 
dimensionless temperature function e(<, q) are defined, 
respectively, as 

f(< ‘I) = ‘(x’ ‘) &-l/2 

CL * 

where I+& y) is the streamfunction and 

a* a* 
u=ay “=-ax 

(144 

(1W 

(15) 

Substituteequations(l2H15)intoequations(5),(8)and 
(9) to obtain 

/y-f"= &&= (16) 

o”+~(l+:)lo’-if’o=i.~(f’~-0’~). (17) 

The transformed boundary conditions are 

~=O:e(<,o)=l (18a) 

1+1 
,fK,o)+neg = 0 (18b) 

q = co : f3(<, co) = 0, f’((‘, co) = 0. (19a, b) 

In these equations, primes denote partial differen- 
tiation with respect to ‘I, and < is 

t(x) = Gr,Fo, = (Ra,/Pr)Fo, (20) 

where Pr is the Prandtl number, Gr, is the Grashof 
number, and Fo, is a new dimensionless number 
defined by 

Fo, = Kblx. (21) 

It can be seen that the inertia parameter 5 is the product 
of Gr, and Fo,. The former measures the local vigour of 
the flow, while the latter depends on the microstructure 
of the porous matrix [2]. 

Equations (16H19) show that the problem does not, 
in general, permit a similarity solution, except that : (1) 
5 = 0, namely, flow inertia is neglected as in the Darcy 
regime, see ref. [lo] ; or (2) 5 = non-zero constant, that 
is, 5 does not depend on x. From equations (10) and(20), 
the second condition can be satisfied only if 1 = 0 and 
corresponds to the natural convection adjacent to an 
isothermal, vertical plate, see ref. [15]. 

For 1 # 0, the problems are non-similar and the local 
non-similarity procedures described in refs. [19, 201 
are employed to solve equations (16)(19). Introduce 
two new functions 

(23) 

Substituting equations (22H23) into equation (17) 
yields 

8”+ T fw-nf’e = l<(f’4-@g). (24) 

Integrate equation (16) with respect to q and using the 
boundary condition (19b) to yield 

e-f’ = <f’=. (25) 

Differentiate equations (24) and (25) with respect to 5 
and use relations (22) and (23) yielding 

f$-g’- f’* = 25f’g’ (26) 

1+3a 
9”+-zg~+~f~l-ag’s-21ff6 

-.is(g’C-~‘g)=~~(~~-s.~). (27) 

The boundary conditions for the above two equations 
can be obtained in a similar way and are in the forms of 

~=o:C$(<,o)=o 

s(5,O) = - (28) 

r] = co : $(5, co) = 0. (29) 

To the first level of approximation, all the terms 
involving the {-derivative in equations (26)-(29) are 
neglected. Therefore, we have two auxiliary equations 

$-g’-f” = 25f’g’ (30) 

1+3a 
8w+-2-gB’+y f@-ngle-uf’4 

= a<(g’b+g) (31) 
with boundary conditions 

s=o:g(r,o)=O, $(5,0)=0 (32) 

f) = cc : #J(& aI) = 0. (33) 
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The local heat flux along the surface is calculated 
from 

i/2 x(31- i)‘2[ -e,(O)] (34) 

which can be rewritten as 

Nu, = [-8’(O)] Rai’2 (35) 

where Nw is the local Nusselt number defined by 

Nu s/i!?= qx 
X kA.T k(T,-T,)’ (36) 

The amount of energy convected in the boundary 
region is 

q,(x) = &,A (T)i’2x(3i+ ‘ji2 je= f’6’ dn. (37) 

Equations (16H19) and equations (30H33) form four 
coupled differential equations. For a fixed 5, they can 
be treated as a set of ordinary differential equations of 
the similarity type, and can be integrated numerically 
by the Runge-Kutta method in conjunction with the 
Newton-Raphson iterative scheme [18, 191. 

In what follows results for two types of flow, 
depending on the surface conditions, will be presented. 
In the first, local heat flux along the vertical plate is 
constant. As can be seen from equation (34), the first 
case is obtained by setting i = l/3. In the second, a 
plane plume will be examined. This case is obtained by 
setting I = -l/3. As seen from equation (37), the 

convected energy in the boundary layer of plane plume 
is independent of x-direction. 

3. RESULTS AND DISCUSSIONS 

The dimensionless temperature profile @(l, q) and 
the vertical velocity componentf’(<, q) are presented in 
Figs. 2(a) and (b) for the case of uniform heat flux 
condition@ = l/3). In the figures, theinertia parameter 
4 varies between 0 and 100. Notice that 1 = 0 
corresponds to the pure Darcy flow. It can be seen from 
Fig. 2 that as 5 increases 0’(& 0) and f’(& 0) decrease, 
and thermal boundary-layer thickness increases 
accordingly. That is, the neglect of flow inertia in the 
momentum equation will result in overpredicting the 
local wall heat flux. From equation (35) the 
dimensionless heat flux can be expressed by 

Nu,/Rak” = [-0’(O)]. (38) 

The values of [-B’(O)] depend on the <-parameter. 
These functional dependencies are listed in Table 1 and 
plotted in Fig. 3. It is shown in Fig. 3 that [-0’(O)] 
decreases as e increases. 

Cheng and Minkowycz [lo] investigated the prob- 
lem based on the Darcy’s law, i.e. 5 = 0. In terms of the 
present notation, they obtained 

Nu,lRa:12 = 0.679 (39) 

FIG. 2(a). Dimensionless temperature profile for uniform heat 
flux plate. 
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FIG. 2(b). Dimensionless vertical velocity profile for uniform 
heat flux plate. 

for uniform heat flux surfacecondition. Equation (39)is 
shown as a dashed line in Fig. 3. It is evident that 
equation (39) is the limiting solution (5 + 0) of the 
present study. 

Bejan and Poulikakos [16] investigated the same 
problem based on Forchheimer’s model. As mentioned 

Table 1. Values of calculated [-0’(O)] and 0& for 
vertical natural convection in porous media 

Nu,/Ra,“’ = [-0’(O)] - W,,,, 
uniform heat flux plane plume 

5 plate, I = l/3 a = -l/3 

0.0 0.6788 0.3143 
0.001 0.6773 0.3141 
0.01 0.6749 0.3126 
0.1 0.6532 0.3002 
1.0 0.5497 0.2453 
5.0 0.4274 0.1863 

10.0 0.3820 0.1616 
50.0 0.2751 0.1185 

100.0 0.2355 0.0958 
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FIG. 3. Nu,/Ra~/* vs ( for uniform heat flux plate. 

earlier, they used different boundary-layer scales, which 
were based on the limit when 5 + co. In the present 
notation, they obtained 

Nu,lRa~~’ = 0.695 cd I”. (40) 

Equation (40) shows that Nu, depends on Raz13. This 
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FIG. 4(a). Dimensionless temperature profile for plane plume. The effect of flow inertia on vertical, natural 
convection heat transfer in saturated, porous media has 
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differs fundamentally from the present study and that of 
Cheng and Minkowycz [lo] in which Nu, depends on 
Raii2. 

The plots of 0(&q) and f’([, q) for the plane 
plume (A = - l/3) are presented in Figs. 4(a) and(b), re- 
spectively. As in the case of uniform heat flux plate, 
f’(& 0) decreases and thermal boundary layer increases 
as 4 increases. Since B’(&O) = 0, an alternative way 
to examine the inertia effect on plane plume flow is 
by evaluating the local non-dimensional temperature 
gradient of 

The functional dependencies of 0’ on 6 and q are listed in 
Table 1 and presented in Fig. 5. It can be seen from Fig. 5 
that there is a maximum value of 67, called el,,, for each 
value of 5 ; and that @& decreases as 5 increases. 
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been investigated by a local non-similarity method. 
Based on Forchheimer’s model and boundary-layer 
approximations, the inertia effect is measured by the 
dimensionless parameter, 5, which turns out to be 
the product of Gr, and Fo,. The former measures 
the local vigour of the flow and depends on the 
bulk properties of fluid and porous system, while the 
latter depends on the microstructure of the porous 
matrix. 

Results are presented and discussed for two types of 
flow : the uniform heat flux plate and plane plume flows. 
In each case, the thermal boundary layer increases with 
increasing 5. Effects of 5 on Nu, and &,,, are presented 
in Table 1 and Figs. 3 and 5. Figure 6 summarizes these 
relations by normalizing the Nu, or &,, with respect to 
their corresponding pure-Darcy values. It can be seen 
that the normalized values decrease as < increases. 

4. 

5. 

6. 

7. 
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EFFETS DE L’JNERTIE SUR LA CONVECTION NATURELLE VERTICALE DANS LES 
MILIEUX POREUX SATURES 

R&mb-On etudie analytiquement l’effet de I’inertie de 1’6coulement sur la convection naturelle verticale 
dans les milieux poreux. Dans le cadre des approximations de la couche limite, le modele de Forchheimer est 
transformi: en un systeme d’equations non linbaires. Les effets de I’inertie sont ivalues et examines en fonction 
du parametre adimensionnel d’inertie 5 = Gr,Fo,, od Gr, est le nombre de Grashof local determine a partir 
des proprittes globales du milieu poreux et Fo, est un nouveau parametre adimensionnel gouverni par la 
microstructure de la matrice poreuse. Les solutions non similaires sont present&es et discutees pour deux types 
d’ecoulement : (1) flux de chaleur uniforme sur la surface; et (2) tcoulements de panache plans. Les resultats 
montrent que la couche hmite thermique est dans le regime non-darcien, plus mince que l’ecoulement 
correspondant selon Darcy. De plus, les flux locaux a la paroi pour le premier cas et le gradient maximal de 

temperature, pour le second cas, ddcroissent quand r augmente. 
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DER TRAGHEITSEINFLUSS BEI VERTIKALER, NATURLICHER KONVEKTION IN 
DURCHTRANKTEN PORGSEN MEDIEN 

Zusammenfassung-Der TrlgheitseinfluB bei vertikaler, natiirlicher Konvektion in durchtrankten, poriisen 
Medien wurde analytisch untersucht. Im Rahmen der Grenzschicht-Approximationen wurde Forchheimers 
Model1 in einen Satz von unabhlngigen Gleichungen formuliert. Der TriigheitseinfluB bei der Stromung 
wurde gemessen und mit Hilfe des dreidimensionalen Trlgheitsparameters r = Gr,Fo, iiberpriift. Dabei wird 
die lokale Grashof-Zahl Gr, durch die mittleren Stoffeigenschaften der getriinkten, porijsen Medien bestimmt 
und ein neuer dimensionsloser Parameter Fo, durch die Mikrostruktur des pordsen Gefiiges festgelegt. Die 
unabhangigen Losungen werden dargelegt und fiir zwei Stromungsarten eriirtert: (1) Striimung bei 
gleichfdrmiger Wlrmestromdichte, (2) Striimung einer ebenen Auftriebsfahne. Die Ergebnisse zeigen, dag die 
thermische Grenzschicht auBerhalb des Darcy-Bereiches dicker ist als bei der entsprechenden reinen Darcy- 
Striimung. Zusatzlich sinkt beim ersten Fall die iirtliche Wandwlrmestromdichte und im zweiten Fall der 

maximale Temperaturgradient bei anwachsendem 5. 

BJIMRHME WHEPHHOHHbIX CBOHCTB IIOTOKA HA BEPTMKAJIbHYIO 
ECTECTBEHHYIO KOHBEKHWIO B HACbIIIIEHHbIX HOPMCTbIX CPEAAX 

AHHOTaqHR-AHanlrTaYeCKA ACCJIeL(OBaH0 BnBIlHEie ElHepImOHHbIX CBOiiCTB IIOTOKa Ha BepT&fKa,IbHykO 

eCTCCTBeHHyIC KOHBeKUREO B HaCbImeHHbIX ITOpACTbIX CpeEiX. B npa6numeHea IIOrpaHCnOK MOLZenb 

@OpXafiMCpa npeo6pa3yeTca KCIiCTeMe HCaBTOMO!JenbHbIXypaBHeHHii. BnmHse aHepIJ&IH YWTbIBanOCb 

w aHanH3ApoBanocb c rIoMombto 6e3pa3MepHOrO napaMerpa r = Gr, Fo,, me Gr,--noKanbHoe wcno 

rpacrof$a, onpenennehtoe 06lseMHbIMU XapaKTepacTHKaMu HaCblmeHHbIX IIOpHCTblX cpen, a 
FO,-HOBbIii 6e3pa3MepHbIii IlapaMeTp,CBX3aHHbIfi C MUKpOCTpyKTypOii IIOpHCTOi! MaTpHUbI. HaiinCHbr 

A npOaHaJH3HpOBaHbI HeaBTOMOaeJIbHbIe pemeHHN Qn,l L,ByX TPUIOB TeVeHHti:(l)K IIOBepXHOCTH IIOLIBO- 

JWTCR OnHOpOnHbId TeIInOBOii IIOTOK H (2) IIJIOCKHe CTpYII. Pe3ynbTaTbI tIOKa3bIBaH)T, YTO TOJWAHa 

TennoBoro norpaaesaoro cnos ans cnyvaa, He onncbmaeMor0 3aKoHoM Aapcti, 6onbme, veh4 nns 

Cny'IatI, IIOn't11HRIOmeTOCII 3aKOHy flapCH. Kpoitfe TOTO, nOKa."bHbIe Tel-InOBbIe nOTOK&, y CTCHKM B 

UepBOM CJIYWC M MaKCHMaJIbHbIit TeMIIepaTypHbIiirpaflHeHTBO BTOpOMYMeHbmaFOTCRC pOCTOM 5. 


